Adaptive Learning of Linguistic Hierarchy in a Multiple Timescale Recurrent Neural Network

Proceedings of the 22nd International Conference on Artificial Neural Networks (ICANN2012), Editors: Alessandro E. P. Villa and Wlodzislaw Duch and Péter Érdi and Francesco Masulli and Günther Palm, Volume 7552, Number 1, pages 555--562, doi: 10.1007/978-3-642-33269-2_70 - Sep 2012
Associated documents :  
Recent research has revealed that hierarchical linguistic structures can emerge in a recurrent neural network with a sufficient number of delayed context layers. As a representative of this type of network the Multiple Timescale Recurrent Neural Network (MTRNN) has been proposed for recognising and generating known as well as unknown linguistic utterances. However the training of utterances performed in other approaches demands a high training effort. In this paper we propose a robust mechanism for adaptive learning rates and internal states to speed up the training process substantially. In addition we compare the generalisation of the network for the adaptive mechanism as well as the standard fixed learning rates finding at least equal capabilities.

 

@InProceedings{HWW12, 
 	 author =  {Heinrich, Stefan and Weber, Cornelius and Wermter, Stefan},  
 	 title = {Adaptive Learning of Linguistic Hierarchy in a Multiple Timescale Recurrent Neural Network}, 
 	 booktitle = {Proceedings of the 22nd International Conference on Artificial Neural Networks (ICANN2012)},
 	 editors = {Alessandro E. P. Villa and Wlodzislaw Duch and Péter Érdi and Francesco Masulli and Günther Palm},
 	 number = {1},
 	 volume = {7552},
 	 pages = {555--562},
 	 year = {2012},
 	 month = {Sep},
 	 publisher = {},
 	 doi = {10.1007/978-3-642-33269-2_70}, 
 }