Read Between the Layers: Leveraging Multi-Layer Representations for Rehearsal-Free Continual Learning with Pre-Trained Models
Transactions on Machine Learning Research (TMLR),
doi: 10.48550/arXiv.2312.08888 https://openreview.net/forum?id=ZTcxp9xYr28
- Jul 2024
We address the Continual Learning (CL) problem, where a model has to learn a sequence of tasks from non-stationary distributions while preserving prior knowledge as it encounters new experiences. With the advancement of foundation models, CL research has shifted focus from the initial learning-from-scratch paradigm to the use of generic features from large-scale pre-training. However, existing approaches to CL with pre-trained models only focus on separating the class-specific features from the final representation layer and neglect the power of intermediate representations that capture low- and mid-level features naturally more invariant to domain shifts. In this work, we propose LayUP, a new class-prototype-based approach to continual learning that leverages second-order feature statistics from multiple intermediate layers of a pre-trained network. Our method is conceptually simple, does not require any replay buffer, and works out of the box with any foundation model. LayUP improves over the state-of-the-art on four of the seven class-incremental learning settings at a considerably reduced memory and computational footprint compared with the next best baseline. Our results demonstrate that fully exhausting the representational capacities of pre-trained models in CL goes far beyond their final embeddings.
@Article{ALLW24, author = {Ahrens, Kyra and Lehmann, Hans Hergen and Lee, Jae Hee and Wermter, Stefan}, title = {Read Between the Layers: Leveraging Multi-Layer Representations for Rehearsal-Free Continual Learning with Pre-Trained Models}, booktitle = {}, journal = {Transactions on Machine Learning Research (TMLR)}, editors = {}, number = {}, volume = {}, pages = {}, year = {2024}, month = {Jul}, publisher = {}, doi = {10.48550/arXiv.2312.08888 https://openreview.net/forum?id=ZTcxp9xYr28}, }